
Dr. Hartmut Schorrig, www.vishia.org, 2021-01-21

Embedded multiplatform C/C++

Approach

Table of Contents

1 Necessity of compl_adaption.h...2

2 What is applstdef_emC.h - necessity for emC..3

3 HAL - Hardware Adaption Layer - and file arrangement for embedded targets...................................4

1 Necessity of compl_adaption.h

As the slide shows the C99 types for bit width fixed integer data types are not present overall. One
reason is - the tradition. Often used and familiar type identifier are used furthermore. It is also a
problem of legacy code maintenance. The other reason: The standard fix width types in C99 like
int_32_t etc. are not compiler-intrinsic. They are defined only in a special header file stdint.h.
Usual this types are defined via typedef. This may be disable compatibility. An int_32_t is not
compatible with a maybe user defined legacy INT32. This is complicating. Usage of stdint.h is not a
sufficient solution. It is too specific and too unflexible.

The compl_adaption.h should be defined and maintained by the user (not by the compiler tool) or by
- the emC library guidelines. It can be enhanced by the user's legacy types in a compatible form. It can
include stdint.h if it is convenient for the specific platform - or replace this content.

The compl_adaption.h should be included in all user's sources, as first one. It should never force a
contradiction to other included files, else for specific non changeable system files for example
wintypes.h which may be necessary only for adaptions of that operation system. Then the
contradictions can be resolves via #undef of disturbing definitions of the system specific afterwords
defined things.

System specific include files such as wintypes.h or windows.h should never be included in user's
sources which are not especially for the specified system. It should be also true if some definitions
should match the expectiations of the user's source independent of the specific system.

The compl_adaption.h contains some more usefully definitions, see .../Base/compl_adaption_h.html.

../html/Base/compl_adaption_h.html

2 What is applstdef_emC.h - necessity for emC

The applstdef_emC.h should be included for all sources, which uses files from the emC concept.
Hence it is not necessary for common driver, only hardware depending, but for user sources.
applstdef_emC.h includes compl_adaption.h, only one of this file is necessary.

The emC concept offers some "language extensions" for portable programming (multiplatform). That
are usual macros, which can be adapted to the platform requirements. For that the applstdef_emC.h
should contain (use a template!) some compiler switches which can be set also platform specific for an
application or application specific..

The example shows the selection of an error or exception handling approach. Generally usage of
TRY..CATCH or ASSERT is recommended. The user's application should not regard about "how to do
that", because often the sources should be reuseable (not really for exact this application), or the
implementation on different platforms should use different types of exception handling - without
adaption of the sources.

The exception handling and its approaches are presented on Base/ThCxtExc_emC.html .

 ● Some Variants usage the base class ObjectJc for Reflection and Types are presented on
Base/ObjectJc_en.html. It can be a simple base struct for poor platforms, or can contain some
more information which characterizes all data (basing on ObjectJc) in a unique way.

 ● Reflection usage, presented on Base/ClassJc_en.html can be used with elaborately text
information for symbolic access to all data, with a "InspcTargetProxy" concept for symbolic access
to a poor target system, or only for a maybe simple type test.

See Base/applstdef_emC_h.html

./..%2Fhtml%2FBase%2Fapplstdef_emC_h.html
./..%2Fhtml%2FBase%2FClassJc_en.html
./..%2Fhtml%2FBase%2FObjectJc_en.html
./..%2Fhtml%2FBase%2FThCxtExc_emC.html

3 HAL - Hardware Adaption Layer -
and file arrangement for embedded targets
TODO

	1 Necessity of compl_adaption.h
	2 What is applstdef_emC.h - necessity for emC
	3 HAL - Hardware Adaption Layer - and file arrangement for embedded targets

